翻訳と辞書 |
Thin group (finite group theory) : ウィキペディア英語版 | Thin group (finite group theory) In the mathematical classification of finite simple groups, a thin group is a finite group such that for every odd prime number ''p'', the Sylow ''p''-subgroups of the 2-local subgroups are cyclic. Informally, these are the groups that resemble rank 1 groups of Lie type over a finite field of characteristic 2. defined thin groups and classified those of characteristic 2 type in which all 2-local subgroups are solvable. The thin simple groups were classified by . The list of finite simple thin groups consists of: *The projective special linear groups PSL2(''q'') and PSL3(''p'') for ''p'' = 1 + 2''a''3''b'' and PSL3(4) *The projective special unitary groups PSU3(''p'') for ''p'' =−1 + 2''a''3''b'' and ''b'' = 0 or 1 and PSU3(2''n'') *The Suzuki groups Sz(2''n'') *The Tits group 2''F''4(2)' *The Steinberg group 3''D''4(2) *The Mathieu group ''M''11 *The Janko group J1 ==See also==
*quasithin group
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Thin group (finite group theory)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|